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INTRODUCTION

The first six months of research on NASA Grant NGR-22-009-078
investigated the application of statistical techniques to the experimental
and analytical study of inertial guidance components,

The completed research involved both instrumentation and data
collection. Instrumentation required for support of the inertial compon-
ent was obtained. modified or built, after which drift data of an inertial
gvroscope was obtained. These data consist of torque~to-balance meas-
urements taken at hourly intervals for over 450 hours. A second test
consisted of measurements taken over approximately the same number

of 15 minute intervals.

Concurrent with these activities an examination of the applica-
bility of Markov process theory was conducted. Parallel efforts on the
part of a graduate student, Lt. John R. Cooper, H. M, S, Royal Navy,
were conducted using already available gyro drift test data and adapting
previously established modelling techniques. This resulted in a
Master's thesis entitled, "A Statistical Analysis of Gyro Drift Test
Data.®

The appendices explain definitions and the mathematical mani-
pulations involved in various types of Markov chains. The notation is
mainly that used in "Finite Markov Chains" by John G. Kemeny and
J. Laurie Snell published by Van Nostrand Company, Inc., Princeton,
New Jersey. Other sources for some of the applicable set theory
concepts are "Markov Chains with Stationary Transition Probabilities®”
by Kai Lai Chung published by Springer-Verlag, Berlin, Germany,
and " Introduction to Probability Theory and Its Application" by
W, Feller published by J. Wiley and Sons, Inc., New York, New York,

All proofs regarding results stated in these appendices are

contained in these references.




1. INSTRUMENTATION AND DATA COLLECTION

The collected data were concerned with small variations in

inertial gyroscope performance over a period of seven hundred hours.
Consequently, all supporting electronics and test instrumentation had
tc be capable of long term stability. The ineitial component lavesti-
gated was a GG-159 gyroscope provided on a'loan basis by
Aeronautical Division of Honeywell, Inc., Minneapolis, Minnesota.
A gyro mounting fixture and electronic circuit designs used previously
for testing similar gyros was provided by the M. L. T. Instrumentation
Laboratory's "Skipper B" group under the direction of Mr. Richard E.
Marshall. The circuitry was re-designed and adapted to the purposes
of this investigation.

Fig. 1 is a block diagram of the manner in which the gyro-
scope was tested. For any constant rate input, a compensation current
was applied to the torque generator thereby cancelling the rate input.
Deviations from this constant rate input (e.g., gyro drift) were com-
pensated by a closed loop around the gyro. The compensation current
in this control loop is proportional to the gyro drift.

During long-term operation of the gyroscope, parameters such
as gyro drift, wheel voltage, wheel power and gyro temperature were
recorded., Of these, only gyro drift could be adequately recorded since
fluctuations in the other parameters were so small as to be unmeas-
urable without an order to magnitude improvement in instrumentatio:
sensitivity. Such improvement would require either a major effort
in circuit design or an equipment procurement exceeding the available
funding. These means were unjustified in view of the fact that the

research goal was basically to model gyro drift.

Collected data consisted of approximately four consecutive
weeks of continuous test with useable data for 6,7, 9 and 4 consecu-
tive day intervals, Interruptions in useable data occurred because:

On two occasions air conditioner mis-operation caused the room

temperature to fall from 70°F to 55° F; once the data recorder ran

out of paper in the early morning hours; and once the recording

-2-
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interval was changed from hourly to quarter~hourly (during the last
four days). In all of these cases the gyroscope was cperating con-
tinuously and only the data recording process was interrupted. This
resulted in approximately 450 hourly gyro driit measurements and

approximately the same number of quarter-hour interval measurements.
These data are at present being analyzed and will be reported later.

Future Effort

Fuzrthier work will he directed towards the analysis of data
already acquired. NASA-ERC has suggested that the primary research
goal of this grant shift to computational support for general theoretical
navig ation and guidance studies conducted at EAL. It is anticipated

that by the end of the present period of the grant such a shift will be
accomplisghed.



2. GYRO DRIFT RATE AS A MARKOV CHAIN

The application of Markov chain theory to gyro drift rate, or to
any measurement which has a random drift, is based on the assumption
that incremental drift rate is a stationary random process. That is,
given an initial drift rate, the change in driit rate over the nexi interval
is independent of all the previous intervals except the immediately
preceding interval. This is the description of a first order Markov
nraorve sa. If the drift rates are defined as the stateg, or events, the
transitions to any other states (the incremental drift rates) are the bases
for the transition matrix. If the statistics of the incremental drift rate
can be determined, the transition matrix can be obtained.

Each element of the transition matrix i the. probability of = "'
occurrence of a change in the magnitude of drift rate (incremental drift
rate) equal to the difference between the two drift rate states, the present
drift rate and the next ensuing drift rate, Once the transition matrix is

known then the entire statistical process is known given the initial condi-~. :

tions.

The primary problem in the case of gyro drift is establishing
whether incremental drift rate is a stationary random process. Prev-

(2)

tion is not valid except for certain conditions which were dependent on

ious work done by Weinstock (1) and Cooper'™’ establish that this assump-
gyro orientation and data time intervals. In Cooper's case there was
cause to suspect the data since it was not considered a true random
sample. The data were obtained from 50 gyroscopes which had all
passed a specific test of their drift rate within a given tolerance. In
this way, the data were not a true sample since data from a gyroscope
with poor performance are eliminated. It is therefore necessary to obtain
data according to some true statistical plan. The best method is to
place a single gyro in a fixed orientation and collect drift data until a
sample is obtained which is large enough to yield a good approximation
for the transition probabilities.

With data taken specifically for this purpose, the doubts encoun-
tered using other data will be removed.



The application of the Markov Chain theory may be extended to
include gyro drift situations not described by the siinple case. These
would include:

1. The investigation of using shorter intervais for data
colilection.

2. The application of higher order Markov processes, that is,
the effect on gyro drift may be examined as a function of what has
occurred two or more intérvals previously.

3. The effect of making the length of the daia inveivals change
according to some statistically distributed function,

4. The analysis of datd from gyroscopes which have passed a
given standard test as a Markov chain with absoi‘bing states.

5. The analysis of Markov chains with different transition
probability distributions,




APPENDIX A
SIMP LE MARKOV CHAIN THEORY

The Markov process or chain is defined ag a process in which
the state at a future time has a conditional probability dependent only
on the state it is in at the present time., This definition permits both
continuous and discrete chains. The latter type will be of more inter-
est in the following discussion. If the magnitudes of the changes in
state are resiricied i0 unit changes, the specizl cagse Markov chain is

then sometimes referred to as the random walk.

The sequence described by a given Markov chain is a function
of the probabilities for transition from a given state to another, Let
E.n be the event that a certain state exists at some time (or trial) n,
then defining pij as the conditional probability that given Ei has occurred
that Ej will occur on the next time interval (or trial) then

En = Py Fi@-n

since the pij (called transition probability) is assumed stationary or
time invariant. This notation permits the probability for a given se-

quence ‘E. ., E E., - ..« E, tobe written:
jo jn

) B -

P{E,E E_ «++E. ]

30 51 %52 jn 250 Pj01Pj152 ° ° "Pjm-2jm-1Pjm-1jm

where a’jO is the probability of being in the given initial state.

Given a number of states and their related transition probabilities
the transition from a given state into any other state including itself
can be written

~

n

. -
Pi_pi1+piz+pi3+"'= Z{ pij:], .

i=1



Since the transition must take place, the sum of the probabilities is one.

This result can be expressed in the form of a matrix

. ~-
Poo Po1 Pon
P10 Fl1 - - - Pip
[P] =
D -~ D - [ ] » L] p
L"nU i "J.].i.iJ

called the transition matrix which expresses the transition probabilities

from any given state to any other state in compact form. The row sums
equal one because transition from a given state must occur as expressed
previously. The transition matrix and the initial distribution completely
define a Markov chain,

Given an initial distribution { EiO] the distribution after one trial

is the matrix product

(£,) = [ P] (E,)
where { ] indicates a column matrix. After two trials

. . . 5 i
(Ei2) = [P] (Ej1) = [P1[P] (Ejo)l = [P 1°(Ejo}
This process may continued at will, resulting in
n
{(Esn) = [ P]° {(Ejp)
This shows that the higher transition probabilities~the probability of a
change from a given state to another given state in a particular number
of trials— may be obtained by raising the transition matrix to the power
equal to the desired number of trials.
At this point, the concepts of closed sets, transient and persist-
ent states and absorbing states are of interest.

A closed set is defined as set of states from which a state extern-

nal to this set can not be reach. This set may be accessible from the




outside but once entered there is no exit. If a closed set contains one
state, it is called an absorbing state. The set of all states in a system
may contain more than one ciosed sei. Within a clcsed set, transgitions
are possible between every pair of states but not necessarily in one step.
These states in a closed set are further categorized by the probability
whether starting from a particular state the system returns to that state.
If this is a certainty, the state is called persistent, or, in other words,
the state continually recurs in the sequence. Thc probability for nersis-
tent state recurrence is therefore equal to one. States whose recurrence
probabilities are less than one are called transient because there is a finite
probability that these states may never recur.

The following transition matrix will indicate the relationships to

the previous definitions.

E, E, ‘ E, E, E, Eq
E, | Py Po1 f Po2 Po3 Po4 Pos
By P1o P1) g P12 P13 P14 Pys
E, P20 P21 P22 P23 j P2q P25
Es P3g P3y P3, P33 | P3q  P3s
Ey Pgo P4) P42 P43 P44 Pys
®s | Pso Ps1 | Ps2 Ps3 | Psg  Pss

- . . « Ce o ma

Given the set of 6 states, let EO and E1 represent a closed set
C1 of persistent states, E2 and E3 represent one closed set CZ of tran-
sient states and E4 and E5 represent another closed set C3 of transient
states may always be rearranged and re-numbered to conform to this

models

For Cl' a closed set, the transition probabilities to the other

states are all zero



For CZ, transitions to C3 are forbidden

P2n = P3p. 5 O 220

Similarly for C3, transitions are possible only to the preceding

sets., The resulting transition matrix is

i
E, E, | = E, E, E,
0 0
Eo Poo Po) 0 0 . .
E, Pio Py 0
2 P20 P2y Py, Pp3 0 0
0
E,  P3p P3) P3; P33 0
E, P40 P4) L Pgp P43 P4q P4s
A r
Eg Psg Ps) P4z P53 Psy Pss

If C2 were another set of persistent states, the sub-matrix of
transition probabilities to C1 would be zero.

By reducing the transition matrix to the indicated partitioned
form

the effect of taking powers of the matrix can be seen. The "C" matrices
individually will be raised to the n power and the new "R" would then

represent the higher transition probabilities from set to set.

By the use of transition matrices, various types of chains may
be studied. Of particular interest are regular Markov chains and

-10 -



absorbing Markov Chains. The former having no transient states and

the latter containing absorbing states.

The types of information which can be determined are:

Starting in a given state what is the probability of reaching
another given state inn steps?

What is the rhean number of steps required to pass between two
given states?

What is the variance of the mean number of steps required iv
pass between the twb given states?

These questions may be related to gyro drift as follows:

Given an initial state of gyro drift what is the probability of
exceeding a given limit in n steps?

What is the mean number of steps required to pass from a given
gyro drift to a given limit?

What is the variance of the mean number of steps required to
pass from a given gyro drift to a given limit?

-11 -



APPENDIX B

MARKOV CHAIN WITH ABSORBING STATES

In the previous section the ;coacepts of clocsed sete and persis-
tent and transient states were discussed. In this section the discussion
will cover a particular type of Markov chain. This chain will have as
-_z_pi;_\er and lower limits, two closed set composed of one state each i, e.,

absorbing states. The transition matrix is:

1

[ t E t : .
Eo E 1 E Ey Eg
EO' 1 0 0 0 0
; ] ] ] | ] ]
1 P1o P11 P12 P13 P14
| | ] ) § | | § | ]
2 Poo P21 P22 Pa3 Paq
] t 1 i} 1 t E 1
3 P3p P3) P3, P33 P34 )
| ]
E, 0 0 0 0 1

By re-ordering and re-numbering the matrix may be arranged
in canonic form to:

! E, E, | E, E, E,
0 1 0 0 0 0
0 i ) 0 0

1) i S
2 P20 P21 P22 P23 Pag
3 P30 P3) P32 P33 P34
Eg | Py Py P4z Pg3 Pyq

or, in different notation, the partitioned matrix becomes

-12 -



where I is the identity matrix and O is a matrix of all zero's.

The Fundamental Matrix for Absorbing Markov Chains |

Since Q™ tends to zero for an absorbing chain, then {i-{Q) -1,
then the mean number of steps t including the first) required to reach

an absorbing state starting from a transient state is

where £ is a column vector of 1!'s

The variance of t is:

(Var; [t]1 } = +, = (@N-I) rv-7T

2 sq
where v = N.§
-rsq = the matrix t with each of its elements squared (not

equalto [ t ] 2 unless t is a diagonal matrix).

For the probability that starting in a transient state the system

ends up in an absorbing state:

= = Y
D - NR

(Mgt 1) = 7 =N%
The r elationship between Markov chains With absorbihy. states and

gyro drift.is that this chain may model data obtained from gyroscopeawhich

pass some gyrodrift*test with a certain standard d performance. The data

derived from those gyroscopes which have not passed the test, having

been removed, may have the effect similar to a Markov chain with

a absorbing states. The gyroscopes having been rejecied are abscorbed,

so to speak, and are no longer considered in the sample.

- 13 -



APPENDIX C

REGULAR MARKOV CHAIN

A wecgular Markov chain is a chain which has no transient states
and has a single closed set. The regular chain has no absorbing states
and after n steps the system may be in any of the states; there are no
zeros in the transition matrix.

In this case, the transition matrix pn approaches a limit A as
n increases., The matrix a has identical rows: with all positive com-
ponents. A has the property AP = PA = A and the A row vector is
that probability vector which for large n gives the probability of
being in a certain state.

The Fundamental Matrix for Regrular Chains

As in the case of Markov chains with absorbing states, regular
Markov chains have fundamental matrices associated with them.

The fundamental matrix Z for the Markov chain defined by the
transition matrix P is defined as

z = [1-(p-a) ]!

where I is the identity matrix and A is the limiting matrix of P.

The fundamental matrix may then be used to obtain the maan
first passage time matrix M. The mean first passage time matrix
is the mairix of the average time of (average number of steps) the

first passing into a given state starting from a given state (fj)

m.

i - Milgd

g

(I-Z + E ng) D

where I is the identify matrix E is a square matrix aff of whose com-

ponents are 1's

- 14 -



Z dg is the diagonal ﬁ;atrix with components Zﬁ of the fundamental
matrix Z and D is the diagonal matrix with components dii = -3%—
i

. . th < s s .
where a, is the i~ component of A. The variance of M is found by

w

(M [£2] ) = M(2 Zgg D-1) + 2 [ZM-E(ZM) 4 ]

This type of Markov chain may be applicable to the general
case of gyroscope drift data. The general case wouid coniaii data
which would be bounded but with all levels of drift a possibility, and
all levels likely to recur,

- 15 -
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